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Abstract SystemC is a modeling language built as an extension of C++. Its growing pop-
ularity and the increasing complexity of designs have motivated research efforts aimed at
the verification of SystemC models using assertion-based verification (ABV), where the de-
signer asserts properties that capture the design intent in a formal language such as PSL or
SVA. The model then can be verified against the properties using runtime or formal ver-
ification techniques. In this paper we focus on automated generation of runtime monitors
from temporal properties. Our focus is on minimizing runtime overhead, rather than mon-
itor size or monitor-generation time. We identify four issues in monitor generation: state
minimization, alphabet representation, alphabet minimization, and monitor encoding. We
conduct extensive experimentation and identify a combination of settings that offers the
best performance in terms of runtime overhead.
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1 Introduction

The increasing complexity of hardware designs and systems-on-chip (SoC), together with
shortening timelines from prototype to mass production, have challenged the traditional
RTL-based design procedures. A new paradigm was needed to allow modeling at higher
levels of abstraction, gradual refinement of the model, and execution of the model during
each design stage. SystemC1 has emerged as one of the leading solutions of the “design
gap.”

SystemC is a system modeling language built as an extension of C++, providing li-
braries for modeling and simulation of systems on chip. It leverages the object-oriented
encapsulation and inheritance mechanisms of C++ to allow for modular designs and IP
transfer/reuse [24]. Various libraries provide further functionality, for example, SystemC’s
Transaction-Level Modeling (TLM) library defines structures and protocols that streamline
the development of high-level models. Thanks to its open-source license, actively involved
community, and wide industrial adoption, SystemC has become a de facto standard model-
ing language within a decade after its first release.

Together, the growing popularity of SystemC and the increasing complexity of designs
have motivated research efforts aimed at the verification of SystemC models using assertion-
based verification (ABV), a widely used method for validation of hardware and software
models [26]. With ABV, the designer asserts properties that capture design intent in a formal
language, e.g., PSL2 [17] or SVA3 [45]. The model then is verified against the properties
using runtime verification or formal verification techniques.

Most ABV efforts for SystemC focus on runtime verification (also called dynamic verifi-
cation, testing, and simulation). This approach involves executing the model under verifica-
tion (MUV) in some environment, while running monitors in parallel with the model. The
monitors observe the inputs to the MUV and ensure that the behavior or the output is consis-
tent with the asserted properties [24]. The complementary approach of formal verification
attempts to produce a mathematical proof that the MUV satisfies the asserted properties.
Our focus in this paper is on runtime verification.

A successful ABV solution requires two components: a formal declarative language for
expressing properties, and a mechanism for checking that the MUV satisfies the properties.
There have been several attempts to develop a formal declarative language for expressing
temporal SystemC properties by adapting existing languages (see [42] for a detailed discus-
sion). Tabakov et al. [42] argued that standard temporal property languages such as PSL and
SVA are adequate to express temporal properties of SystemC models, after extending them
with a set of Boolean assertions that capture the event-based semantics of SystemC. Enrich-
ing the Boolean layer, together with existing clock-sampling mechanisms in PSL and SVA,
enables specification of properties at different levels of abstraction. Tabakov and Vardi [41]
then showed how a nominal change of the SystemC kernel enables monitoring temporal
assertions expressed in the framework of [42] with overhead of about 0.05–1% per moni-
tor. (Note that [41] used hand-generated monitors, while this work focuses on automatically
generated monitors.)

The second component needed for assertion-based verification, a mechanism for check-
ing that the MUV satisfies the asserted properties, requires a method for generating runtime

1IEEE Standard 1666–2005.
2Property Specification Language, IEEE Standard 1850–2007.
3SystemVerilog Assertions, IEEE Standard 1800–2005.
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monitors from formal properties. For simple properties it may be feasible to write the mon-
itors manually (cf., [20]); however, in most industrial workflows, writing and maintaining
monitors manually would be an extremely high-cost, labor-intensive, and error-prone pro-
cess [1]. This has inspired both academia and industry to search for methods to automate
this process.

Formal, automata-theoretic foundations for monitor generation for temporal proper-
ties were laid out in [32], which showed how a deterministic finite word automaton
(DFW) can be generated from a temporal property such that the automaton accepts the
finite traces that violate the property. Many works have elaborated on that approach,
cf. [2, 3, 14, 18, 19, 23]; see the discussion below of related work. Many of these works,
e.g. [2], handle only safety properties, which are properties whose failure is always wit-
nessed by a finite trace. Here, as in [14], we follow the framework of [32] in its full gen-
erality and we consider all properties whose failure may be witnessed by a finite trace. For
example, the failure of the property “eventually q” can never be witnessed by a finite trace,
but the failure of the property “always p and eventually q” may be witnessed by a finite
trace.

A priori it is not clear how monitor size is related to performance, and most works on
this subject have focused on underlying algorithmics, or on heuristics to generate smaller
monitors, or on fast monitor generation. This paper is an attempt to shift the focus toward
optimizing the runtime overhead that monitor execution adds to simulation time. We believe
that this reflects more accurately the priorities of the industrial applications of monitors [2].

A large model may be accompanied by thousands of monitors [5], most of which are
compiled once and executed many times, so lower runtime overhead is a crucial optimiza-
tion criterion, much more than monitor size or monitor-generation time. In this paper we
identify several algorithmic choices that need to be made when generating temporal moni-
tors for monitoring frameworks implemented in software. (Please note that here we ignore
the issue of integrating the monitor into the monitored code; cf. [41].) We conduct extensive
experimentation to identify the choices that lead to superior performance.

We identify four issues in monitor generation: state minimization, should nondetermin-
istic automata be determinized online or offline; alphabet representation, should alphabet
letters be represented explicitly or symbolically; alphabet minimization, should mutually
exclusive alphabet letters be eliminated; and monitor encoding, how should the transition
function of the monitor be expressed. These options give us a workflow space of 33 different
workflows for generating a monitor from a nondeterministic automaton.

We evaluate the performance of different monitor implementations using a SystemC
model4 representing an adder [41]. Its advantages are that it is scalable and creates events
at many different levels of abstraction. For temporal properties we use linear temporal logic
formulas. We use a mixture of pattern and random formulas, giving us a collection of over
1,300 temporal properties. We employ a tool called CHIMP (CHIMP Handles Instrumen-
tation and Monitoring of Properties) to manage the transformation of LTL formulas into
monitors using each of the 33 workflows. Our experiments identify a specific workflow that
offers the best performance in terms of runtime overhead.

4Note that the comparison is between different monitor implementations and is applicable to other C or C++
modeling languages.
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2 SystemC

Many contemporary systems consist of application-specific hardware and software, and tight
production cycles make it impossible to wait for the hardware to be manufactured before
starting to design the software. In a typical system-on-chip architecture [10], for example,
a cell phone, there are hardware components that are controlled by software. In addition,
many hardware design decisions, for example, numeric precision or the width of communi-
cation buses, are determined based on the needs of the software running on them. This has
led to a design methodology where hardware and software are co-designed in the same ab-
stract model. The partitioning between what will be implemented in hardware and what will
be written as software is intentionally left blurry at the beginning, allowing the designers the
ability to consider different configurations before committing a functional block to silicon
or software.

SystemC is a system-level design framework that is capable of handling both hardware
and software components. It allows a designer to combine complex electronic systems and
control units in a single model, to simulate and observe the behavior, and to check if it meets
the performance objectives. In the strict sense of the word, SystemC is not a new language.
In fact, it is a library of C++ classes and macros that model hardware components, like
modules and channels; provide hardware-specific data types, like 4-valued logic types; and
define both abstract and specific communication interfaces, like Boolean input. SystemC is
built entirely on standard C++, which means that every SystemC model can be compiled
with a C++ compiler. The compiled model has to be linked with a SystemC simulator (for
example, the OSCI-provided reference implementation) to produce an executable program.

Software typically executes sequentially, partly because most computer architectures
have a single CPU core, and partly because a single thread of execution is easier to manage
by the operating system. However, in a hardware system, many components execute simul-
taneously. For example, when using a cellphone to make a call, we activate simultaneously a
radio subsystem that handles two-way communication with the cell tower, a signal process-
ing unit that converts voice to signal and signal to voice, and a display controller that shows
details about the conversation on the screen. Simulating such a system in software requires
the ability to simulate a large number of tasks executing simultaneously, and is critical for
the early stages of the design process.

SystemC addresses this issue by providing mechanisms for simulating (in software) par-
allel execution. This is achieved by a layered approach where high-level constructs share an
efficient simulation engine [24]. The base layer of SystemC provides an event-driven simu-
lation kernel that controls the model’s processes in an abstract manner. The kernel leverages
a concept borrowed from hardware design languages, called delta cycles, to give the execut-
ing processes the illusion of parallel execution.

In SystemC, modules are the most fundamental building blocks. Similar to C++ objects,
modules allow related functionality and data to be incorporated into individual entities and
to remain inaccessible by the other components of the system unless exposed explicitly.
This allows modules to be developed independently and to be reused or sold in commercial
libraries [8]. As an example, the skeleton of a SystemC module is presented in Listing 1.

In this code fragment, SC_MODULE is one of SystemC’s macros, which declares a C++
class named “Nand.” Like any other C++ class, a module can declare local variables and
functions. SC_CTOR is another predefined macro that simplifies the definition of a con-
structor for the module. A constructor of a module serves the same purpose as a constructor
of a C++ class (i.e., initializing local variables, executing functions, etc.), but has some ad-
ditional functionality that is specific to SystemC. For example, the processes of the module

Author's personal copy
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Listing 1 Skeleton code for defining a SystemC module

Listing 2 A SystemC module of a NAND gate

have to be declared inside the constructor. This is done using pre-defined SystemC macros
that specify which class functions should be treated by the SystemC kernel as runnable pro-
cesses. After declaring each process, the user can optionally specify its sensitivity list. The
sensitivity list may include a subset of the channels and signals defined in the module, as
well as externally defined clock objects or events. Whenever there is a change of value of any
of the channels or signals listed in the sensitivity list, the corresponding process is triggered
for execution. Listing 2 illustrates these concepts.

This code fragment declares one output and two input signals of type bool. The func-
tion some_function() implements the expected functionality of the NAND gate. The
macro SC_METHOD declares it to be a SystemC process. When triggered, a method process
executes from start to finish. In particular, a method process cannot suspend while waiting
for some resource to become available. In contrast, a thread process may suspend its ex-
ecution by calling wait(). The state of the thread process at the moment of suspension
is preserved, and upon subsequent resumption (for example, when the waited-for resource
becomes available) the execution continues from the point of suspension. Thread processes
are declared using the macro SC_THREAD. Both thread and method processes can define a
sensitivity list. Each sensitivity list declaration applies to the process immediately preced-
ing the declaration. The sensitive declaration at the end of the module indicates that
the method process some_function() should be triggered as soon as one of the input
signals changes its value.

Author's personal copy
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3 Related work

Most related papers that deal with monitoring focus on simplifying the monitor or reducing
the number of states. Using smaller monitors is important for in-circuit monitoring, for ex-
ample, for post-silicon verification [5], but for pre-silicon verification, using lower-overhead
monitors is more important. There is a paucity of prior works focusing on minimizing run-
time overhead.

For early work on constructing temporal monitors see [29]. Several papers focus on build-
ing monitors for informative prefixes, which are prefixes that violate input assertions in an
“informative way.” Kupferman and Vardi [32] define informative prefixes and show how to
use an alternating automaton to construct a nondeterministic finite word automaton (NFW)
of size 2O(ψ) that accepts the informative prefixes of an LTL formula ψ . Kupferman and
Lampert [31] use a related idea to construct an NFW automata of size 2O(ψ) that accepts at
least one prefix of every trace that violates a safety property ψ . Two constructions that build
monitors for informative prefixes are by Geilen [19] and by Finkbeiner and Sipma [18].
Geilen’s construction is based on the automata-theoretic construction of [22], while that
of Finkbeiner and Sipma is based on the alternating-automata framework of [32]. Neither
provide experimental results.

Armoni et al. [2] describe an implementation based on [32] in the context of hardware
verification. Their experimental results focus on both monitor size and runtime overhead.
They showed that the overhead is significantly lower than that of commercial simulators.
Stolz and Bodden [40] use monitors constructed from alternating automata to check speci-
fications of Java programs, but do not give experimental results. For other works that focus
on minimization see [4, 30, 33].

Giannakopoulou and Havelund [23] apply the construction of [22] to produce nonde-
terministic monitors for X-free LTL formulas, and simulate a deterministic monitor on the
fly. They provide one experimental result from the early testing of their implementation.
A weakness of their approach is that their LTL semantics distinguishes between finite and
infinite traces, which implies that LTL properties may have different meanings in the context
of dynamic and formal verification.

Morin-Allory and Borione [35] show how to construct hardware modules implementing
monitors for properties expressed using the simple subset [25] of PSL. Pierre and Ferro [37]
describe an implementation based on this construction, and present some experimental re-
sults that show runtime overhead, but do not present any attempts to minimize it. Boulé and
Zilic [5] show a rewriting-based technique for constructing monitors for the simple subset
of PSL. They provide substantial experimental results, but focus on monitor size and not on
runtime overhead.

Chen et al. describe a general framework of Monitoring-Oriented Programming (MOP)
[11]. In MOP, runtime monitoring is supported as a fundamental principle for building re-
liable software: monitors are automatically synthesized from specified properties and inte-
grated into the original system to check its dynamic behaviors.

D’Amorim and Roşu [14] show how to construct monitors for minimal bad prefixes of
temporal properties without any restrictions regarding whether the property is a safety prop-
erty or not. They construct a nondeterministic finite automaton of size 2O(ψ) that extracts
the safety content from ψ , and simulate a deterministic monitor on the fly. They present two
optimizations: one reduces the size of the automaton, while the other searches for a good
ordering of the outgoing transitions so that the overall expected cost of running the monitor
will be smallest. They measure experimentally the size of the monitors for a few properties,
but do not measure their runtime performance. A similar construction, but without any of
the optimizations, is also described by Bauer et al. [3].

Author's personal copy
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4 Theoretical background

Let AP be a finite set of atomic propositions and let Σ = 2AP be a finite alphabet. Given
a temporal specification ψ over AP, we denote the set of models of the specification with
L(ψ) = {w ∈ Σω | w |� ψ}. Let u ∈ Σ∗ denote a finite word. We say that u is a bad prefix
for L(ψ) iff ∀σ ∈ Σω : uσ �∈ L(ψ) [32]. Intuitively, a bad prefix cannot be extended to an
infinite word in L(ψ). A minimal bad prefix does not have a bad prefix as a strict prefix.

A nondeterministic Büchi automaton (NBW) is a tuple A = 〈Σ,Q,δ,Q0,F 〉, where Σ

is a finite alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is a transition function,
Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of accepting states. If q ′ ∈ δ(q, σ ) then
we say that we have a transition from q to q ′ labeled by σ . We extend the transition function
δ : Q×Σ → 2Q to δ : 2Q ×Σ∗ → 2Q as follows: for all Q′ ⊆ Q, δ(Q′, a) = ⋃

q∈Q′ δ(q, a),
and for all σ ∈ Σ∗, δ(q, aσ ) = δ(δ(q, a), σ ). A run of A on a word w = a0a1 . . . ∈ Σω is
a sequence of states q0q1 . . . , such that q0 ∈ Q0 and qi+1 ∈ δ(qi, ai) for some ai ∈ Σ . For a
run r , let Inf (r) denote the states visited infinitely often. A run r of A is called accepting iff
Inf (r) ∩ F �= ∅. The word w is accepted by A if there is an accepting run of A on w. For a
given Linear Temporal Logic (LTL) or PSL/SVA formula ψ , we can construct an NBW that
accepts precisely L(ψ) [44]. We use SPOT [16], an LTL-to-Büchi automaton tool, which
is among the best available in terms of performance [39]. Using our framework for PSL or
SVA would require an analogous translator.

A nondeterministic automaton on finite words (NFW) is a tuple A = 〈Σ,Q,δ,Q0,F 〉.
An NFW can be determinized by applying the subset construction, yielding a deter-
ministic automaton on finite words (DFW) A′ = 〈Σ,2Q, δ′, {Q0},F ′〉, where δ′(Q,a) =⋃

q∈Q δ(q, a) and F ′ = {Q : Q ∩ F �= ∅}. For a given NFW A, there is a canonical minimal
DFW that accepts L(A) [28]. In the remainder of this paper, given an LTL formula ψ , we
use ANBW(ψ) to mean an NBW that accepts L(ψ), and ANFW(ψ) (respectively, ADFW(ψ))
to mean an NFW (respectively, DFW) that rejects the minimal bad prefixes of L(ψ).

Building a monitor for a property ψ requires building ADFW(ψ). Our work is based on
the construction by d’Amorim and Roşu [14], which produces ANFW(ψ). Their construction
assumes an efficient algorithm for constructing ANBW(ψ) and is, therefore, is applicable to
properties expressed in any a wide variety of specification languages (for example, if the
property is expressed in LTL, ANBW(ψ) can be constructed using [16]; for PSL specifi-
cations, the construction of ANBW(ψ) can be done using [9]; etc.) Below we sketch the
construction of [14] and then we show how we construct ADFW(ψ).

Given an NBW A = 〈Σ,Q,δ,Q0,F 〉 and a state q ∈ Q, define Aq = 〈Σ,Q,δ, q,F 〉.
Intuitively, Aq is the NBW automaton defined over the structure of A but replacing the
set Q0 of initial states with {q}. Let empty(A) ⊆ Q consist of all states q ∈ Q such that
L(Aq) = ∅, i.e., all states that cannot start an accepting run. The states in empty(A) are “un-
necessary” in A, because they cannot appear on an accepting run. We can compute empty(A)

efficiently using nested depth-first search [13]. Deleting the states in empty(A) is done using
the function call spot::scc_filter(), which is available in SPOT.

To generate a monitor for ψ , d’Amorim and Roşu build ANBW(ψ) and remove
empty(ANBW(ψ)). They then treat the resulting automaton as an NFW, with all states taken
to be accepting states. That is, the resulting NFW is A = 〈Σ,Q′, δ′,Q0 ∩ Q′,Q′〉, where
Q′ = Q- empty(A), and δ′ is δ restricted to Q′ × Σ . Let the automaton produced by this
algorithm be AdR

NFW(ψ).

Theorem 1 (See [14]) AdR
NFW(ψ) rejects precisely the minimal bad prefixes of ψ .

Author's personal copy
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Fig. 1 The two types of
workflows we used to generate
monitors. The focus of our work
is on the paths from NBW to a
monitor; we use SPOT as a
pre-processor to generate pruned
NBWs from LTL formulas

From now on we refer to AdR
NFW(ψ) simply as ANFW(ψ). ANFW(ψ) is not useful as a

monitor because of its nondeterminism. One way to construct a monitor from ANFW(ψ)

is to determinize it explicitly using the subset construction. In the worst case the resulting
ADFW(ψ) is of size exponential of the size of ANFW(ψ), which is why explicit determiniza-
tion has rarely been used. We note, however, that we can minimize ADFW(ψ), getting a
minimal DFW. It is not clear, a priori, what impact this determinization and minimization
will have on runtime overhead.

An alternative way of constructing a monitor from ANFW(ψ) that avoids the potential for
exponential blow up of the number of states is to use ANFW(ψ) to simulate a deterministic
monitor on the fly. d’Amorim and Roşu describe such a construction in terms of nonde-
terministic multi-transitions and binary transition trees [14]. Instead of introducing these
formalisms, here we use instead the approach in [2, 43], which presents the same concept
in automata-theoretic terms. The idea in both papers is to perform the subset construction
on the fly, as we read the inputs from the trace. Given ANFW(ψ) = 〈Σ,Q,δ,Q0,Q〉 and a
finite trace a0, . . . , an−1, we construct a run P0, . . . ,Pn of ADFW(ψ) as follows: P0 = {Q0}
and Pi+1 = ⋃

s∈Pi
δ(s, ai). The run is accepting iff Pi = ∅ for some i ≥ 0 (i.e., no transition

is enabled), which means that we have read a bad prefix. Notice that each Pi is of size linear
in the size of ANFW(ψ), thus we have avoided the exponential blowup of the determinization
construction, with the price of having to compute transitions on the fly [2, 43].

We do not consider the property as failing if eventualities are not satisfied by the end
of the simulation. Doing so would require changing the semantics of the specification and
would require special treatment of the last state. Our approach maintains the same semantics
for dynamic and formal verification runs and only bad prefixes are reported as failures.

The workflows that we use to generate monitors can be grouped into two types, summa-
rized in Fig. 1.

5 Monitor generation

We now describe various issues that arise when constructing ADFW(ψ).

5.1 State minimization

As noted above, we can construct ADFW(ψ) on the fly. We discuss in detail below how to
express ADFW(ψ) as a collection of C++ expressions. The alternative is to feed ANFW(ψ)

into a tool that constructs a minimal equivalent ADFW(ψ). We use the BRICS Automaton
tool [34]. Clearly, determinization and minimization, as well as subsequent C++ compila-
tion, may incur a nontrivial computational cost. Still such a cost might be justifiable if the
result is reduced runtime overhead, as assertions have to be compiled only once, but then run
many times. A key question we want to answer is whether it is worthwhile to determinize
ANFW(ψ) explicitly, rather than on the fly.

Author's personal copy
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5.2 Alphabet representation

In our formalism, the alphabet Σ of ANFW(ψ) is Σ = 2AP, where AP is the set of atomic
propositions appearing in ψ . In practice, tools that generate ANBW(ψ) (SPOT in our case)
often use B(AP), the set of Boolean formulas over AP, as the automaton alphabet: a transi-
tion from state q to state q ′ labeled by the formula θ is a shortcut to denote all transitions
from q to q ′ labeled by σ ∈ 2AP, when σ satisfies θ . When constructing ADFW(ψ) on the
fly, we can use formulas as letters. Automata-theoretic algorithms for determinization and
minimization of NFWs, however, require comparing elements of Σ , which makes it imprac-
tical to use Boolean formulas for letters. We need a different way, therefore, to describe our
alphabet.5 Below we show two ways to describe the alphabet of ANFW(ψ) in terms of 16-bit
integers.

5.2.1 Assignment-based representation

The explicit approach is to represent Boolean formulas in terms of their satisfying truth
assignments. Let AP = {p1,p2, . . . , pn} and let F (p1,p2, . . . , pn) be a Boolean function.
An assignment to AP is an n-bit vector a = [a1, a2, . . . , an]. An assignment a satisfies F iff
F (a1, a2, . . . , an) evaluates to 1. Let An be the set of all n-bit vectors and let I : An → Z+
return the integer whose binary representation is a, i.e., I (a) = a12n−1 +a22n−2 + . . .+an20.
We define sat(F ) = {I (a) : a satisfies F }. Thus, the explicit representation of the automaton
ANFW(ψ) = 〈B(AP),Q, δ,Q0,F 〉 is Aabr

NFW(ψ) = 〈{0, . . . ,2n − 1},Q, δabr ,Q
0,F 〉, where

q ′ ∈ δabr (q, z) iff q ′ ∈ δ(q, σ ) and z ∈ sat(σ ).

5.2.2 BDD-based representation

The symbolic approach to alphabet representation leverages the fact that Ordered Binary
Decision Diagrams (BDDs) [6, 7] provide canonical representations of Boolean functions.
A BDD is a rooted, directed, acyclic graph with one or two terminal nodes labeled 0 or 1,
and a set of variable nodes of out-degree two. The variables respect a given linear order on
all paths from the root to a leaf. Each path represents an assignment to each of the variables
on the path. For a fixed variable order, two BDDs are the same iff the Boolean formulas they
represent are the same.

The symbolic approach uses SPOT’s spot::tgba_reachable_iterator_
breadth_first::process_link() function call to get references to all Boolean
formulas that appear as transition labels in ANFW(ψ). The formulas are enumerated
using their BDD representations (using SPOT’s spot::tgba_succ_iterator::
current_condition() function call), and each unique formula is assigned a unique
integer. We thus obtain Abdd

NFW(ψ) by replacing transitions labeled by Boolean formulas with
transitions labeled by the corresponding integers. While the size of B(AP) is doubly expo-
nential in |AP|, the automaton ANBW(ψ) is exponential in |ψ |, so the number of Boolean
formulas used in the automaton is at most exponential in |ψ |.

5BRICS Automaton represents the alphabet of the automaton as Unicode characters, which have one-to-
one correspondence to the set of 16-bit integers.
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5.2.3 From NFW to DFW

We provide both Aabr
NFW(ψ) and Abdd

NFW(ψ) as inputs to BRICS Automaton, producing,
respectively, minimized Aabr

DFW(ψ) and Abdd
DFW(ψ). We note that neither of these two ap-

proaches is a priori a better choice. LTL-to-automata tools use Boolean formulas rather than
assignments to reduce the number of transitions in the generated nondeterministic automata.
However, when using Abdd

DFW(ψ) as a monitor, the trace we monitor is a sequence of truth
assignments, and Abdd

DFW(ψ), while deterministic with respect to the BDD encoding of the
transitions, is not deterministic with respect to truth assignments to atomic propositions. As
a consequence, there is no guarantee that at each step of the monitor at most one state is
reachable.

5.3 Alphabet minimization

While propositional temporal specification languages are based on Boolean atomic propo-
sitions, they are often used to specify properties involving non-Boolean variables. For ex-
ample, we may have the atomic formulas (a == 0), (a == 1), and (a > 1) in a
specification involving the values of a variable int a. Notice that in this example not all as-
signments in 2AP are consistent. For example, the assignment (a == 0) && (a == 1)
is not consistent, and a transition guarded by (a == 0) && (a == 1) is never enabled.
Note that such a guard can be generated even if the guard is not a subformula in the spec-
ification. By eliminating inconsistent assignments we may be able to reduce the number
of letters in the alphabet exponentially without in any way changing the correctness of the
monitor. The advantage of this optimization is that by identifying transitions that always
evaluate to f alse we can exclude them from the generated monitor and thus improve its
run-time performance. Identifying inconsistent assignments requires calling an SMT (Satis-
fiability Modulo Theory) solver [36]. Here we would need an SMT solver that can handle
arbitrary C++ expressions that evaluate to type bool. Not having access to such an SMT
solver, we use the compiler as an improvised SMT solver.

A set of techniques called constant folding allows compilers to reduce constant expres-
sions to a single value at compile time (see, e.g., [12]). When an expression contains vari-
ables instead of constants, the compiler uses constant propagation to substitute values of
variables in subsequent subexpressions involving the variables. In some cases the compiler
is able to deduce that an expression contains two mutually exclusive subexpressions, and is-
sues a warning during compilation. We construct a function that uses conjunctions of atomic
formulas as conditionals for dummy if/then expressions, and compile the function. (We
use gcc 4.0.3.) To gauge the effectiveness of this optimization we apply it using two sets
of conjunctions. Full alphabet minimization uses all possible conjunctions involving atomic
formulas or their negations, while partial alphabet minimization uses only conjunctions that
contain each atomic formula, positively or negatively.

We compile the function and then parse the compiler warnings that identify inconsis-
tent conjunctions. Prior to compiling the Büchi automaton we augment the original tempo-
ral formula to exclude those conjunctions from consideration. For example, if (a == 0)
&& (a == 1) is identified as an inconsistent conjunction, we augment the property ψ to
ψ ∧ G(!((a == 0) ∧ (a == 1))).

5.4 Monitor encoding

We describe seven ways of encoding automata as C++ monitors. Not all can be used with all
automata directly, so we identify the transformations that need to be applied to an automaton
before each encoding can be used.
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Fig. 2 ANFW(ϕ) constructed
from the specification
ϕ = G(p → (q ∧ Xq ∧ XXq))

using the algorithm of d’Amorim
and Roşu. Double circles
represent accepting states, and
state 2 is the initial state

The strategy in all encodings based on automata that are nondeterministic with respect to
truth assignments (i.e., ANFW(ψ) and minimal Abdd

DFW(ψ)) is to construct the run P0,P1, . . .

of the monitor using two bit-vectors of size |Q|: current[] and next[]. Initially
next[] is zeroed, and current[j] = 1 iff qj ∈ Q0. Then, after sampling the state of
the program, we set next[k] = 1 iff current[j] = 1 and if there is a transition from
qj to qk that is enabled by the current program state. When we are done updating next[],
we assign it to current[], zero next[], and then repeat the process at the next sample
point. Intuitively, current[] keeps track of the set of automaton states that are reachable
after seeing the execution trace so far, and next[] maintains the set of automaton states
that are reachable after completing the current step of the automaton.

Notice that when the underlying automaton is deterministic with respect to truth as-
signments (i.e., Aabr

DFW(ψ)), after each step there are precisely 1 or 0 reachable states. In
those cases it is inefficient to use bit-vector encoding of the set of reachable states, be-
cause this set is guaranteed to be singleton. Thus, when constructing monitors from de-
terministic automata, we use int current and int next to keep track of the run of
the automaton. Initially, current = j iff qj is the initial state. Then we set next =
k iff the transition from qj to qk is enabled at the first sample point; since the automa-
ton is deterministic, at most one transition is enabled. We continue in this fashion until the
simulation ends or until none of the transitions in the monitor is enabled, indicating a bad
prefix.

The details of the way we update current[] (respectively, current) and next[]
(respectively, next) are reflected in the different encodings. As a running example, we show
how to construct a monitor for the property ϕ = G(p → (q ∧ Xq ∧ XXq)). The first step is
to use SPOT to construct a NBW automaton that accepts all traces satisfying ϕ. Next, we
use SPOT to construct ANFW(ϕ), which is presented in Fig. 2.

5.4.1 Nondeterministic encodings

Two novel encodings, which we call front_nondet and back_nondet, expect that
the automaton transitions are Boolean formulas, and do not assume determinism. Thus,
front_nondet and back_nondet can be used with ANFW(ψ) directly. They can also
be used with Aabr

DFW(ψ) and Abdd
DFW(ψ), once we convert back the transition labels from inte-

gers to Boolean formulas as follows. In Aabr
DFW(ψ), we calculate the assignment correspond-

ing to each integer, and use that assignment to generate a conjunction of atomic formulas
or their negations. In Abdd

DFW(ψ) we relabel each transition with the Boolean function whose
BDD is represented by the integer label.
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Listing 3 Illustrating front_nondet encoding of the automaton in Fig. 2

The front_nondet encoding uses an explicit if to check if each state s of cur-
rent[] is enabled. For each outgoing transition t from s it then uses a nested if with a
conditional that is a verbatim copy of the transition label of t to determine if the destination
state of t is reachable from s. Listing 3 illustrates this encoding.
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Listing 4 Illustrating back_nondet encoding of the automaton in Fig. 2

The back_nondet encoding uses a disjunction that represents all of the ways in which
a state in next[] can be reached from the currently reachable states. Listing 4 illustrates
this encoding.

5.4.2 Deterministic encodings

Three novel deterministic encodings, which we call front_det_switch, front_det_
ifelse, and back_det, expect that the automaton has been determinized using
assignment-based encoding. Thus, these three encodings can be used only with Aabr

DFW(ψ).
Note that we work with Aabr

DFW(ψ) directly and do not convert the automaton alphabet from
integers back to Boolean functions. Instead, at the beginning of each step of the automaton
we use the state of the MUV (i.e., the values of all public and private variables, as exposed
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Table 1 Assignment-based
encoding for the transitions of the
ANFW(ψ) in Fig. 2

p q int

0 0 0

0 1 1

1 0 2

1 1 3

Fig. 3 Aabr
NFW(ϕ) for

ϕ = G(p → (q ∧ Xq ∧ XXq)).
Determinizing Aabr

NFW(ϕ) using
BRICS Automaton produces
Aabr

DFW(ϕ), which is then
minimized. The minimized
Aabr

DFW(ϕ) in this case is identical

to Aabr
NFW(ϕ)

by the framework of [42]) to derive an assignment a to the atomic propositions in AP(ψ).
We then calculate an integer representing the relevant model state mod_st = I (a), where a
is the current assignment, and use mod_st to drive the automaton transitions.

Referring to the running example automaton presented in Fig. 2, we first show how to
convert the Boolean expressions on the transitions to integers using assignment-based inte-
ger representation. Table 1 shows the integer encoding of all possible assignments of values
to p and q . We then construct Aabr

NFW(ϕ) in Fig. 3. Determinizing and minimizing Aabr
NFW(ϕ)

using BRICS Automaton produces Aabr
DFW(ϕ), which in this case is identical to Aabr

NFW(ϕ).
The back_det encoding is similar to back_nondet in that it encodes the automaton

transitions as a disjunction of the conditions that allow a state in next[] to be enabled.
The difference is that here we use an integer instead of a vector to keep track of the (at most
one) state reachable in the current step of the automaton, and the transitions are driven by
mod_st instead of by Boolean functions. See Listing 5 for an illustration of this encoding.

The front_det_switch and front_det_ifelse encodings are similar, but dif-
fer in the C++ constructs used to take advantage of the determinism in the automaton. Ap-
plying front_det_switch encoding to the automaton in Fig. 3 is illustrated in Listing 6,
and front_det_ifelse encoding is illustrated in Listing 7.

5.5 Deterministic table-based encodings

In the encodings discussed above, the transition function of the automaton is encoded using
if or switch statements. The final two encodings, described below, are based on table
look-up. The key to a table look-up monitor encoding is to create a table, such that given the
current state and the current assignment, we can look up the next state in the table. Given
the current state and the system state index mod_st , we can transition to the next state in
one operation, avoiding overhead associated with large nested if statements or switch
statements.

We illustrate both table-based encodings using the determinized, minimized automaton
Aabr

DFW(ϕ) presented in Fig. 3 and the associated integer encodings of all possible assignments
of values to p and q in Table 1. We can construct a look-up table as illustrated in Table 2.

Author's personal copy



Form Methods Syst Des

Listing 5 Illustrating back_det encoding of the automaton in Fig. 3

Two novel deterministic encodings, which we call front_det_file_table and
front_det_memory_table, expect that the automaton has been determinized using
assignment-based encoding. Like the other deterministic encodings, these two encodings
can be used only with Aabr

DFW(ψ). Again, we work with Aabr
DFW(ψ) directly and do not con-

vert the automaton alphabet from integers back to Boolean functions; for table encodings
we take advantage of the fact that the automaton alphabet integers can be stored easily in a
state-transition look-up table.

As we did for the encodings of Sect. 5.4.2, we use the state of the MUV (i.e., the values
of all public and private variables, as exposed by the framework of [42]) at the beginning of
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Listing 6 Illustrating front_det_switch encoding of the automaton in Fig. 3
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Listing 7 Illustrating front_det_ifelse encoding of the automaton in Fig. 3

each step of the automaton to derive an assignment a to the atomic propositions in AP(ψ).
Again, we calculate an integer representing the relevant model state mod_st = I (a), where
a is the current assignment.

The encodings front_det_file_table and front_det_memory_table are
similar, but differ in the way the state-transition look-up table is stored and used by the
monitor.
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Table 2 Look-up table corresponding to the automaton in Fig. 3. Given the current state
and the integer representation of the alphabet, find the next state or detect failure. For
example, if the current state is 0 and the alphabet representation is 3, the next state is
state 0

Alphabet representation

0 1 2 3

Current state 0 fail 1 fail 0

1 fail 2 fail 0

2 2 2 fail 0

5.5.1 The file-based table encoding

In the front_det_file_table encoding we store the automaton Aabr
DFW(ϕ) in a text

file using the LBT format [38]. Briefly, the LBT file format is a text-based encoding of
automata. It iteratively describes each state (whether it is accepting, initial, both, or neither),
together with a unique state ID. Each outgoing transition is listed immediately after the state
description, and includes the destination state ID and a transition letter/guard.

When the monitor is instantiated, it uses an LBT parser that is automatically included
with the monitor’s code to parse the automaton from the file and to construct the look-
up table. Applying front_det_file_table encoding to the automaton in Fig. 3 is
illustrated in Listing 8.

One advantage of using the file-based table encoding is that it separates the code im-
plementing the monitor from the definition of the automaton. Such decoupling allows the
monitor to be compiled and linked with the MUV before the LBT representation of the
automaton is even created. It further allows monitored properties to be changed on the fly,
without having to recompile the MUV, by simply replacing the contents of the LBT file.

5.5.2 The memory table encoding

In the front_det_memory_table encoding we declare the state-transition look-up
table explicitly in the monitor’s constructor. The table is declared directly as a one-
dimensional, row-major array, forgoing the need for a LBT parser library or a file containing
the automaton. Applying the front_det_memory_table encoding to the automaton in
Fig. 3 is illustrated in Listing 9.

Note that in this encoding the variable table is a class variable of type int[] with
the same capacity as the number of elements in local_table. A limitation of the current
C++ standard (C99) does not allow arrays to be initialized explicitly after declaration, thus
we use local_table to initialize the array, and std::memcpy to copy the array from
local_table to table.

5.6 Workflow space

The different options allow 33 possible combinations for generating a monitor, summa-
rized in Table 3. The first decision is whether state minimization is required. If it is not
required, one of the three alphabet minimization options is applied, and one of the two non-
deterministic monitor encodings (front_nondet or back_nondet) is used to create
the final monitor.

When using state minimization it is necessary to select the alphabet representation (BDD-
or assignment-based) to be using during minimization. The three alphabet minimization op-
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Listing 8 Illustrating front_det_file_table encoding of the automaton in Fig. 3

tions can be selected independently of the alphabet representation selection. Recall that
BDD-based minimization produces automata that are non-deterministic with respect to as-
signments, therefore only the two non-deterministic monitor encodings are available. Al-
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Listing 9 Illustrating front_det_memory_table encoding of the automaton in Fig. 3

ternatively, if assignment-based minimization is employed, all non-deterministic and deter-
ministic encodings (seven total) can be used.

In summary, there are six workflows that require no state minimization, six workflows
that use BDD-based state minimization, and 21 workflows that use assignment-based state
minimization.
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Table 3 The workflow space for generating monitors

State
minimization

Alphabet
representation

Alphabet
minimization

Monitor
encoding

No Not required front_nondet

back_nondet

Yes BDDs None front_nondet

back_nondet

Assignments Partial front_nondet

back_nondet

front_det_ifelse

Full front_det_switch

back_det

front_det_file_table

front_det_memory_table

6 Experimental setup

6.1 SystemC model

Our experimental evaluation is based on the Adder6 model presented in [41]. The Adder
implements a squaring function by using repeated incrementing by 1. We used the Adder to
calculate 1002 with 1,000 instances of a monitor for the same property. Since we are mostly
concerned with monitor overhead, we focus on the time difference between executing the
model with and without monitoring. We established a baseline for the model’s runtime by
compiling the Adder model with a virgin installation of SystemC (i.e., without the moni-
toring framework of [41]) and averaging the runtime over 10 executions. To calculate the
monitor overhead we averaged the runtime of each simulation over 10 executions and sub-
tracted the baseline time. Notice that the overhead as calculated includes the cost of the
monitoring framework and the slow-down due to all 1,000 monitors.

6.2 Properties

We used specifications constructed using both pattern formulas and randomly generated for-
mulas. We used LTL formulas, as we have access to explicit-state LTL-to-automata transla-
tors (SPOT, in our case). Note, however, that the framework is applicable to any specification
language that produces NBWs and is not restricted to LTL formulas. Minimization of finite-
state automata was performed by BRICS Automaton. SPOT, BRICS Automaton, and
CHIMP, the tool that manages the different workflows, are available for download.7

6Source code available at http://www.cs.rice.edu/CS/Verification/Software/software.html.
7http://www.cs.rice.edu/CS/Verification/Software/software.html.
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We adopted the pattern formulas used in [21] and presented below:

c1(n) :=
n∨

i=1

GFpi lu(n) := (. . . (p1Up2)) . . .Upn)Upn+1

c2(n) :=
n∧

i=1

GFpi ru(n) := p1U(p2U(. . . (pnUpn+1) . . .))

qq(n) :=
n∧

i=1

(Fpi ∨ Gpi+1) rr(n) :=
n∧

i=1

(GFpi ∨ FGpi+1)

ss(n) :=
n∨

i=1

Gpi

In addition to these formulas we also used bounded F and bounded G formulas, and a
new type of nested U formulas, presented below:

f 1(n) := G(p → (q ∨ Xq ∨ . . . ∨ XX . . .Xq))

f 2(n) := G(p → (q ∨ X(q ∨ X(q ∨ . . . ∨ Xq) . . .)))

g1(n) := G(p → (q ∧ Xq ∧ . . . ∧ XX . . .Xq))

g2(n) := G(p → (q ∧ X(q ∧ X(q ∧ . . . ∧ Xq) . . .)))

uu(n) := G(p1 → (p1U(p2 ∧ p2U(p3 . . . (pn ∧ pnUpn+1)))) . . .)

In our experiments we replaced the generic propositions pi in each pattern formula with
atomic formulas (a==100^2-100(n-i-1)), where a is a variable representing the run-
ning total in the Adder. For each pattern we scaled up the formulas until all 33 workflows ei-
ther timed out or crashed. Most workflows can be scaled up to n = 5, except for the bounded
properties, which can be scaled to n = 17. We identified 127 pattern formulas for which at
least one workflow could complete the monitoring task.

The random formulas that we used were generated following the framework of [15],
using the implementation from [39]. For each formula length there are two parameters that
control the number of propositions used and the probability of selecting a U or a V operator
(formula length is calculated by adding the number of atomic propositions, the number of
logical connectives, and the number of temporal operators). We varied the number of atomic
propositions between 1 and 5, the probability of selecting a U or a V was one of {0.3, 0.5,
0.7, 0.95}, and we varied the formula length from 5 to 30 in increments of 5. We used
the same style of atomic propositions as in the pattern formulas. For each combination of
parameters we generated 10 formulas at random, giving us a total of 1200 random formulas.

7 Results for non-table-based workflows

The results described in this section are based on experiments on Ada, Rice’s Cray XD1
compute cluster.8 Each of Ada’s nodes has two dual core 2.2 GHz AMD Opteron 275 CPUs
and 8 GB of RAM. We ran with exclusive access to a node so all 8 GB of RAM were
available for use. We allowed 8 hours (the maximal job time on Ada) of computation time

8http://www.rcsg.rice.edu/ada.
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Fig. 4 The size of the
determinized/minimized
automaton in most cases is
smaller than the size of the
corresponding nondeterministic
automaton. Points fall above the
diagonal when this is the case

per workflow per formula for generating a Büchi automaton, automata-theoretic transforma-
tions, generating C++ code, compilation, linking with the Adder model using the monitoring
framework presented in [41], and executing the monitored model 10 times.

We first evaluate the individual effect of each optimization. For each formula we partition
the workflow space into two groups: those workflows that use the optimization and those that
do not. We form the Cartesian product of the overhead times from both groups and present
them on a scatter plot.

7.1 State minimization

Figure 4 shows the effect of determinization and state minimization on the automaton size.
We observe that in most cases minimizing the automata (i.e., minimizing Aabr

DFW(ϕ) and
Abdd

DFW(ϕ)) produces smaller automata than the equivalent ANFW(ϕ). It is known [28] that
in the worst case, nondeterministic automata are exponentially more succinct than the cor-
responding minimal deterministic automata. Our experimental results show that the worst
case blow up is avoided for the types of formulas that are likely to be used in practice, and,
in fact, for some formulas we see three orders of magnitude smaller deterministic automata.
This observation goes against the traditional justification for constructing monitors from
nondeterministic rather than deterministic automata.

In Fig. 5 we show the effect of state minimization on the runtime overhead. A few outliers
notwithstanding, using state minimization lowers the runtime overhead of the monitor.

7.2 Alphabet representation

Figure 6 shows that using assignments leads to better performance than BDD-based alpha-
bet representation. Our data show that in most cases, using assignments leads to smaller
automata, which again suggests a connection between monitor size and monitor efficiency.
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Fig. 5 Monitor overhead with
and without state minimization.
State minimization lowers the
overhead by orders of magnitude.
Points fall above the diagonal
when monitor overhead with
state minimization is lower

7.3 Alphabet minimization

Our data shows that partial- and full-alphabet minimization typically slow down the mon-
itor (see Fig. 7). We think that the reasons behind this are two-fold. On one hand, the per-
formance of gcc as a decision engine to discover mutually exclusive conjunctions is not
very good (in our experiments it was able to discover only 10–15% of the possible mutually
exclusive conjunctions). On the other hand, augmenting the formula increases the formula
size, but SPOT does not take advantage of the extra information in the formula and typically
generates bigger Büchi automata. If we manually augment the formula with all mutually
exclusive conjunctions we do see smaller Büchi automata, so we believe this optimization
warrants further investigation.

7.4 Monitor encoding

Finally, we compared the effect of the different monitor encodings (Fig. 8). Our conclusion
is that no encoding dominates the others, but two (front_nondet and front_det_
switch) show the best performance relative to all others, while back_det has the worst
performance. Comparing front_nondet and front_det_switch directly to each
other (Fig. 9) indicates that front_det_switch delivers better performance for all but
a few formulas.

7.5 Best non-table-based workflow

The final check of our conclusion is presented in Fig. 10, where we plot the performance of
the winning workflow against all other workflows. There are a few outliers, but overall the
workflow gives better performance than all others.
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Fig. 6 Using assignments for
alphabet representation leads to
better performance than using
BDDs. Points fall above the
diagonal when assignment-based
representation is better

Fig. 7 Effect of alphabet
minimization on monitor
overhead. Points fall below the
diagonal when alphabet
minimization results in lower
overhead. We do not see a
significant advantage to using
alphabet minimization, but this
may be due to the particular tool
chain that we used

Author's personal copy



Form Methods Syst Des

Fig. 8 Comparison of the monitor overhead when using different encodings. Each subplot shows the per-
formance when using one of the encodings (x-axis) vs. all other encodings (y-axis). Points fall above the
diagonal when the featured encoding results in lower overhead

Based on the comparison of individual optimizations we conclude that front_det_
switch encoding with assignment-based state minimization and no alphabet minimization
is the best overall workflow.

8 Results for table-based workflows

Soon after we completed the experiments described in Sect. 7, the compute cluster Ada was
decommissioned, thus preventing us from evaluating the table-based encodings on the same
hardware. In order to make an objective comparison between the different encodings, we
re-ran all original experiments and new experiments involving the table-based encodings,
on the Shared University Grid at Rice (SUG@R), Rice’s Intel Xeon compute cluster.9 Each

9http://rcsg.rice.edu/sugar/.
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Fig. 9 Comparison of the
monitor overhead when using the
two best encodings
(front_det_switch and
front_nondet). Points fall
above the diagonal when we see
better performance using
front_det_switch, which is
the case for all but a few formulas

Fig. 10 Best overall
performance for non-table-based
workflows. Points fall above the
diagonal when the
front_det_switch
encoding, with minimization,
assignment-based alphabet
representation, and without
alphabet minimization results in
lower monitor overhead
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Fig. 11 Comparison of the
monitor overhead when using the
front_det_switch
encoding with assignment-based
state minimization and no
alphabet minimization (x-axis)
vs. all other encodings (y-axis).
Points fall above the diagonal
when the winning workflow
identified on Ada also dominates
the (non-table-based) workflows
when executing on SUG@R

of SUG@R’s 134 SunFire × 4150 nodes has two quad-core Intel Xeon processors running
at 2.83 GHz and 16 GB of RAM per processor. SUG@R is running Red Hat Enterprise 5
Linux, 2.6.18 kernel. We ran with exclusive access to a node so all 16 GB of RAM were
available for use. As before, we allowed 8 hours of computation time per workflow per
formula for generating Büchi automata, automata-theoretic transformations, generating C++
code, compilation, linking with the Adder model using the monitoring framework presented
in [41], and executing the monitored model 10 times.

First we confirmed that the conclusions based on the initial experiments on Ada remain
valid when applied to the experimental results obtained on SUG@R. For example, we com-
pared the performance of the winning workflow identified in Sect. 7 against the perfor-
mance of the 27 non-table workflows. The results are presented in Fig. 11. We observe
that the front_det_switch encoding with assignment-based state minimization and no
alphabet minimization dominates the other non-table-based workflows on SUG@R, thus
validating our earlier conclusion.

Next we consider the performance of the two table-based workflows. Each was run on the
same set of formulas as the other workflows. First we show the runtime overhead when using
the file-based table encoding, compared to the overhead of all non-table-based encodings
(Fig. 12). Although for some formulas the file-based table encoding shows significantly
smaller overhead, for others it shows much larger overhead. Our interpretation of this data
is that the cost of accessing the disk to read the file containing the automaton incurs an
overhead that cannot be offset by the workflow’s runtime performance.

We evaluate the performance of the memory-based table encoding in a similar manner
(Fig. 13). We see that avoiding disk access improves the performance significantly over the
file-based table encoding. This observation is confirmed by direct comparison between file-
based and memory-based table encoding (Fig. 14). For all formulas evaluated by the two
workflows, the memory-based encoding is at least as fast (in most cases, significantly faster)
than the file-based encoding.
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Fig. 12 Comparison of the
monitor overhead when using the
front_det_file_table
encoding (x-axis) vs. all other
encodings (y-axis). Points fall
above the diagonal when the
front_det_file_table
encoding results in lower monitor
overhead

Fig. 13 Comparison of the
monitor overhead when using the
front_det_memory_table
encoding (x-axis) vs. all other
encodings (y-axis). Points fall
above the diagonal when the
front_det_memory_table
encoding results in lower monitor
overhead

This data indicates that the memory-based table encoding is very competitive, but it is
not clear whether its performance is better than the wining workflow identified in Sect. 7.
Direct comparison of the runtime overhead is presented in Fig. 15. Our conclusion is that for
the majority of formulas the runtime overhead of the winning workflow identified earlier is
smaller. Thus, the front_det_switch encoding with assignment-based state minimiza-
tion and no alphabet minimization remains the best overall workflow that we have evaluated.

9 Discussion and future work

In this paper we focus on minimization of monitor runtime. We identify the exploration
space consisting of monitor encodings, alphabet encodings, transition representation, and
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Fig. 14 Comparison of the
monitor overhead when using the
front_det_memory_table
encoding (x-axis) vs. the
front_det_file_table
(y-axis). Points fall above the
diagonal when the memory-based
table encoding results in lower
overhead

Fig. 15 Comparison of the
monitor overhead when using
front_det_memory_table
encoding (x-axis) vs.the best
encoding identified earlier
(y-axis). The latter shows better
runtime overhead, indicated by
points falling above the diagonal.
Although there are more than 900
data points in this figure, most of
them are on top of each other

other possible optimizations. We use off-the-shelf components (SPOT, BRICS Automa-
ton, gcc) to perform some of the transformations, and a custom tool (CHIMP) to man-
age the different workflows. Together with the specification formalism proposed in [42],
and the monitoring framework described in [41], this work provides a general ABV so-
lution for temporal monitoring of SystemC models. Since the starting point is ANBW(ψ),
the techniques presented here are easy to integrate with a wide variety of specification lan-
guages. For example, it is easy to see that by applying [9] we can easily extend the scope
of this work to efficient monitoring of PSL properties. We have identified a workflow that
generates low-overhead monitors and we believe that it can serve as a good default set-
ting.
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Although the two table-based workflows have higher runtime overhead, they offer other
important advantages. Both table-based workflows allow us to reduce the size of the monitor
from hundreds of thousands of lines of code in some cases, to hundreds of lines of code.
This avoids compilation problems and reduces the compilation time significantly. Another
advantage of using the file-based table encoding is the flexibility to change the monitored
properties without recompiling the MUV. The focus of this paper is on runtime overhead
and exploring these issues is beyond its scope, but we believe that they are worthy of further
consideration.

Practical use of our tool may involve monitoring tasks that are different than the syn-
thetic load that we used for our tests. Recent developments in the area of self-tuning sys-
tems show that even highly optimized tools can be improved by orders of magnitude using
search techniques over the workflow space (cf., [27]). One possible extension of our work is
to apply different optimizations to different types of formulas. For example, our data shows
that when the minimized automaton (Abdd

DFW(ψ) or Aabr
DFW(ψ)) has more states than the un-

minimized automaton (ANFW(ψ)), generating a monitor using ANFW(ψ) leads to smaller
runtime overhead. This observation can be used as a heuristic, and further investigation may
reveal that for different classes of formulas different workflows yield the best results. Thus,
we have left the user full control over the tool workflow.
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